

Configuration
Guidelines

CUSTOMIZING WEB CONTEXT RECOGNITION

CLEORA WEBSPHERE 8.5.5

Imprint
Copyright © TTS Knowledge Products GmbH. All rights reserved.
Customizing web context recognition
29. February 2016 – Version 2.00

 Page I of I

Content

1 Introduction ... 1

1.1 Overview .. 1

2 Configuration .. 2

2.1 Configuration file .. 2

2.2 Match Patterns .. 3

2.3 Multiple Match Patterns .. 4

2.4 Optional Match Patterns.. 5

2.5 Context Patterns ... 6

2.6 Alternative Context Patterns .. 7

2.7 Object Recognition Optimization .. 9

3 Reference .. 10

Customizing web context recognition Page 1 of 10

1 Introduction
tt performance suite allows you to customize the context recognition for web applications. This can
be used to fine-tune context detection at recording time, as well as to tailor the context-oriented
delivery of content to the end-users (via QuickAccess).

1.1 Overview
Customization is done using a configuration file in xml format. This file is used by both tt know-
ledge force (recording of simulations and documentation) and tt guide (recording of Guides,
delivery of content via QuickAccess). The configuration file is distributed and updated via the
central tt performance suite server.
The tt guide client checks for an update of the configuration file on every application start and
downloads it automatically if needed.
The tt knowledge force client checks for updates on every server login and also downloads the file
automatically if a newer version is available (no restart required).
For more information regarding the creation and distribution of the configuration file please refer
to the documentation “Configuration distribution” which is available at the same location as this
document.

Customizing web context recognition Page 2 of 10

2 Configuration
Currently, there are three different ways of identifying a web application and its individual contexts:

• Based on its URL, or parts of the URL
• Based on its page title, or parts of the page title
• Based on parts of the HTML source code.

2.1 Configuration file
Example

<context>

<id>identifier</id>

<uiname>plain name</uiname>

<match_patterns>

<pattern>

<where></where>

<matches></matches>

</pattern>

</match_patterns>

</context>

Each application-specific context configuration is represented by a <context> node within the
context configuration file. This node contains at least three child nodes: <id>, <uiname>, and
<match_patterns>. The <id> is a technical identifier which can be arbitrarily chosen but must
not contain any blanks or special characters besides the period (“.”), the underscore (“_”), and the
hyphen “-”. The <uiname> represents the application name as it is stored in the context field
during recording of Guides or TT documents; this name is also used as a mandatory search term
within QuickAccess. The <match_patterns> define how the context is determined.

Customizing web context recognition Page 3 of 10

2.2 Match Patterns
The following example illustrates a basic context definition for the learning portal of the
SAP Learning Solution (LSO), using one simple context for the entire application:

<context>

<id>LSO.Portal</id>

<uiname>LSO Portal</uiname>

<match_patterns>

<pattern>

<where>URL</where>

<matches>.*/sap/hcm_learning/leso\.htm.*</matches>

</pattern>

</match_patterns>

</context>

The application should be identified by a substring within the URL (<where>). The match pattern
specified in <matches> is a regular expression following the syntax described in
www.rexegg.com/regex-quickstart.html#ref. Please note that it is not case sensitive. In our example,
it shall match the substring /sap/hcm_learning/leso.htm of the URL. For a generic solution,
the protocol (http, https) and the domain name are not used as part of the match pattern, and any
parameters following the page name “leso.htm” are also disregarded. Hence, the wildcard
expression ".*" is used at the beginning and the end of the URL pattern, as it matches any number
of characters.

http://www.rexegg.com/regex-quickstart.html#ref

Customizing web context recognition Page 4 of 10

2.3 Multiple Match Patterns
To improve the accuracy of the context recognition, multiple patterns can be defined. Especially for
applications where the individual application-specific patterns are not unique among web
applications, the combination of two or even more match patterns can ensure a correct context
recognition. For instance, within the SAP Netweaver Portal, the only identifying part within the URL
is the string “/irj/”, which might as well occur in other applications. Therefore, the string “- sap
netweaver portal” from the page title is used as an additional pattern which has to be
matched:
<context>

<id>Web.SAP.Portal</id>

<uiname>SAP Netweaver Portal</uiname>

<match_patterns>

<pattern>

<where>TITLE</where>

<matches>.* - sap netweaver portal</matches>

</pattern>

<pattern>

<where>URL</where>

<matches>.*/irj/.*</matches>

</pattern>

</match_patterns>

</context>

By default, all patterns are mandatory, i.e. they all have to match. Please see the next section on
how to use optional patterns.

Customizing web context recognition Page 5 of 10

2.4 Optional Match Patterns
You might also want to define alternative match patterns (only one of two or more patterns have
to match) to identify the application. This may be necessary if there are no match patterns within
an application that stay the same throughout the entire application. In that case, the node
<optional>true</optional> can be added to the respective match pattern:
<context>

 <id>Sample</id>

 <uiname>Sample Application</uiname>

 <match_patterns>

 <pattern>

 <where>URL</where>

 <matches>.*mainpage.*</matches>

 <optional>true</optional>

 </pattern>

 <pattern>

 <where>URL</where>

 <matches>.*shoppingcart.*</matches>

 <optional>true</optional>

 </pattern>

 </match_patterns>

</context>

In this example, the context “Sample Application” is recognized if either the string mainpage OR
the string shoppingcart is a substring of the captured URL.

Customizing web context recognition Page 6 of 10

2.5 Context Patterns
While match patterns are used to detect the application itself, context patterns are used to define
which context information shall be retrieved from the application. By default, only the application
name defined in <uiname> will be used as context information for content filtering; but this can
be extended by providing additional context patterns using a <get_context_patterns> node.
In the following example for the Google Drive web application, a label displayed in the browser’s
title bar shall be used to extract additional context information:

<context>

 <id>Google.Drive</id>

 <uiname>Google Drive</uiname>

 <match_patterns>

 <pattern>

 <where>URL</where>

 <matches>.*drive.google.com.*</matches>

 </pattern>

 </match_patterns>

 <get_context_patterns>

 <pattern>

 <where>TITLE</where>

 <matches>(.*) - Google Drive</matches>

 <replace_with>$1</replace_with>

 </pattern>

 </get_context_patterns>

</context>

In the context pattern, the TITLE of the web page is defined as the place <where> to look for ad-
ditional context information. If the title contains the substring “ – Google Drive“ (including the

Customizing web context recognition Page 7 of 10

blanks), it qualifies for context retrieval. Since the actual context information we are interested in is
at the beginning of the title, the <matches> node starts with a so-called match group (.*), a
wildcard placeholder enclosed in parentheses. The $1 in the <replace_with> node refers to this
match group to extract its content as context information.
In the example, "Starred – Google Drive" will yield "Starred" as $1.

2.6 Alternative Context Patterns
Sometimes, the syntax of the string from which the context is retrieved varies within one applica-
tion. In the following example for Microsoft Office 365 Online, the web applications for Word, Excel
and PowerPoint can be identified in the page title as follows:

Document.docx – Microsoft Word Online

Book.xslx – Microsoft Excel Online

Presentation.pptx – Microsoft PowerPoint Online

In OneDrive, however, albeit using the same domain name, the title has a different structure and
contains context information of interest at the beginning of the page title:

Files – OneDrive

Recent docs – OneDrive

Shared – OneDrive

To deal with such differences, additional context patterns can be defined within the same
<get_context_patterns> node, as illustrated in the following example:

<context>

 <id>Office.Online</id>

 <uiname>Office Online</uiname>

 <match_patterns>

 <pattern>

 <where>URL</where>

 <matches>.*onedrive.live.com.*</matches>

 </pattern>

 </match_patterns>

 <get_context_patterns>

 <pattern>

 <where>TITLE</where>

 <matches>.* - Microsoft (.*?) Online</matches>

 <replace_with>$1</replace_with>

 < stop_if_matches>1</ stop_if_matches>
 </pattern>

Customizing web context recognition Page 8 of 10

 <pattern>

 <where>TITLE</where>

 <matches>(.*) - OneDrive</matches>

 <replace_with>OneDrive $1</replace_with>

 </pattern>

 </get_context_patterns>

</context>

Matching is done from the top to the bottom of the configuration file. By default, the last matching
pattern is used, unless you inserted a forced stop after a pattern that matches. If you define several
patterns, starting with a specific one that only matches a small number of cases, followed by a
generic pattern that matches in any case, you may want to insert
<stop_if_matches>1</stop_if_matches> after the specific pattern to ensure that this
pattern is used if it matches, instead of the generic pattern that comes last.

Customizing web context recognition Page 9 of 10

2.7 Object Recognition Optimization
For object recognition, TT Guide and QuickAccess rely heavily on ID’s of objects in HTML pages.
This yields reliable results with static ID’s. In some web applications, however, dynamic ID’s are
used for objects inside the web pages. This causes object recognition problems during rerecording
and playback of Guides. To deal with this, the configuration file also allows you to define criteria for
HTML element ID’s which should be used for (or excluded from) object recognition. This is done
using the <use_id_pattern> node.
In the following example for the SAP Enterprise Portal, all element ID’s starting with either “WD”,
“Link”, “FD”, or “htmlb_” should be ignored. Since the list of IDs is a positive list, a NOT operator
(“!”) has to be put in front of the ID pattern:

<context>

<id>Web.SAP.Portal</id>

<uiname>SAP Enterprise Portal</uiname>

<use_id_pattern>(?!WD|Link|FD|htmlb_).*</use_id_pattern>

<match_patterns>

<pattern>

<where>TITLE</where>

<matches>.* - sap netweaver portal</matches>

</pattern>

<pattern>

<where>URL</where>

<matches>.*/irj/.*</matches>

</pattern>

</match_patterns>

<get_context_patterns>

<pattern>

<where>TITLE</where>

<matches>(.*) - sap netweaver portal</matches>

<replace_with>$1</replace_with>

</pattern>

</get_context_patterns>

</context>

Customizing web context recognition Page 10 of 10

3 Reference
The following table lists all items that may be contained in the com.tts.at.configuration.custom.xml
configuration file:

Item Example Explanation

context - (empty) Basic tree element

id Google.Drive Any alphanumeric character plus period (.) hyphen (-
) underscore (_)

uiname Google Drive Represents the application name as it is stored in
the context field during recording of Guides or
TT documents

match_patterns - (empty) Holds the definition of a match pattern, consisting at
least of <pattern>, <where> and <matches>.

get_context_patterns - (empty) Holds the definition of a context pattern, consisting at
least of <pattern>, <where> and <matches>.

pattern - (empty)

where URL Defines the place where the match (see below) must
occur. The following values may be used:
TITLE – looks for a match in the HTML page's
title element (as displayed in the browser's title bar
or the tab).
URL – looks for a match in the URL (web address) of
the web page.

matches .*google.com
/drive/.*

For match_patterns and
get_context_patterns: Contains a regular expression
that describes all matching strings.

replace_with $1 For context patterns: If the regular expression in
<matches> contains a capturing group (in parenthe-
ses), the replace_with item can be used to refer to
the content of the capturing group.

optional true If there are several patterns and only one needs to
be matched, mark them as
<optional>true</optional>.

stop_if_matches 1 If <get_context_patterns> contains more than one
<pattern>, you can use this option to stop evaluation
upon the first match. Otherwise, the last match will
be used.

	1 Introduction
	1.1 Overview

	2 Configuration
	2.1 Configuration file
	2.2 Match Patterns
	2.3 Multiple Match Patterns
	2.4 Optional Match Patterns
	2.5 Context Patterns
	2.6 Alternative Context Patterns
	2.7 Object Recognition Optimization

	3 Reference

